円分多項式の一覧 (105個) 数学 多項式 2024-10-14 多項式の数式処理を行うための自作 Rust クレートの動作確認のために円分多項式を 105 個生成してみました. $\Phi_{30}(x)$ までと $\Phi_{105}(x)$ は合っているようなので, たぶんどれも正しいと思います. Φ1(x)=x−1\Phi_{1}(x) = x-1 Φ2(x)=x+1\Phi_{2}(x) = x+1 Φ3(x)=x2+x+1\Phi_{3}(x) = x^{2}+x+1 Φ4(x)=x2+1\Phi_{4}(x) = x^{2}+1 Φ5(x)=x4+x3+x2+x+1\Phi_{5}(x) = x^{4}+x^{3}+x^{2}+x+1 Φ6(x)=x2−x+1\Phi_{6}(x) = x^{2}-x+1 Φ7(x)=x6+x5+x4+x3+x2+x+1\Phi_{7}(x) = x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 Φ8(x)=x4+1\Phi_{8}(x) = x^{4}+1 Φ9(x)=x6+x3+1\Phi_{9}(x) = x^{6}+x^{3}+1 Φ10(x)=x4−x3+x2−x+1\Phi_{10}(x) = x^{4}-x^{3}+x^{2}-x+1 Φ11(x)=x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1\Phi_{11}(x) = x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 Φ12(x)=x4−x2+1\Phi_{12}(x) = x^{4}-x^{2}+1 Φ13(x)=x12+x11+x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1\Phi_{13}(x) = x^{12}+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 Φ14(x)=x6−x5+x4−x3+x2−x+1\Phi_{14}(x) = x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1 Φ15(x)=x8−x7+x5−x4+x3−x+1\Phi_{15}(x) = x^{8}-x^{7}+x^{5}-x^{4}+x^{3}-x+1 Φ16(x)=x8+1\Phi_{16}(x) = x^{8}+1 Φ17(x)=x16+x15+x14+x13+x12+x11+x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1\Phi_{17}(x) = x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 Φ18(x)=x6−x3+1\Phi_{18}(x) = x^{6}-x^{3}+1 Φ19(x)=x18+x17+x16+x15+x14+x13+x12+x11+x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1\Phi_{19}(x) = x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 Φ20(x)=x8−x6+x4−x2+1\Phi_{20}(x) = x^{8}-x^{6}+x^{4}-x^{2}+1 Φ21(x)=x12−x11+x9−x8+x6−x4+x3−x+1\Phi_{21}(x) = x^{12}-x^{11}+x^{9}-x^{8}+x^{6}-x^{4}+x^{3}-x+1 Φ22(x)=x10−x9+x8−x7+x6−x5+x4−x3+x2−x+1\Phi_{22}(x) = x^{10}-x^{9}+x^{8}-x^{7}+x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1 Φ23(x)=x22+x21+x20+x19+x18+x17+x16+x15+x14+x13+x12+x11+x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1\Phi_{23}(x) = x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 Φ24(x)=x8−x4+1\Phi_{24}(x) = x^{8}-x^{4}+1 Φ25(x)=x20+x15+x10+x5+1\Phi_{25}(x) = x^{20}+x^{15}+x^{10}+x^{5}+1 Φ26(x)=x12−x11+x10−x9+x8−x7+x6−x5+x4−x3+x2−x+1\Phi_{26}(x) = x^{12}-x^{11}+x^{10}-x^{9}+x^{8}-x^{7}+x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1 Φ27(x)=x18+x9+1\Phi_{27}(x) = x^{18}+x^{9}+1 Φ28(x)=x12−x10+x8−x6+x4−x2+1\Phi_{28}(x) = x^{12}-x^{10}+x^{8}-x^{6}+x^{4}-x^{2}+1 Φ29(x)=x28+x27+x26+x25+x24+x23+x22+x21+x20+x19+x18+x17+x16+x15+x14+x13+x12+x11+x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1\Phi_{29}(x) = x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 Φ30(x)=x8+x7−x5−x4−x3+x+1\Phi_{30}(x) = x^{8}+x^{7}-x^{5}-x^{4}-x^{3}+x+1 Φ31(x)=x30+x29+x28+x27+x26+x25+x24+x23+x22+x21+x20+x19+x18+x17+x16+x15+x14+x13+x12+x11+x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1\Phi_{31}(x) = x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 Φ32(x)=x16+1\Phi_{32}(x) = x^{16}+1 Φ33(x)=x20−x19+x17−x16+x14−x13+x11−x10+x9−x7+x6−x4+x3−x+1\Phi_{33}(x) = x^{20}-x^{19}+x^{17}-x^{16}+x^{14}-x^{13}+x^{11}-x^{10}+x^{9}-x^{7}+x^{6}-x^{4}+x^{3}-x+1 Φ34(x)=x16−x15+x14−x13+x12−x11+x10−x9+x8−x7+x6−x5+x4−x3+x2−x+1\Phi_{34}(x) = x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}+x^{10}-x^{9}+x^{8}-x^{7}+x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1 Φ35(x)=x24−x23+x19−x18+x17−x16+x14−x13+x12−x11+x10−x8+x7−x6+x5−x+1\Phi_{35}(x) = x^{24}-x^{23}+x^{19}-x^{18}+x^{17}-x^{16}+x^{14}-x^{13}+x^{12}-x^{11}+x^{10}-x^{8}+x^{7}-x^{6}+x^{5}-x+1 Φ36(x)=x12−x6+1\Phi_{36}(x) = x^{12}-x^{6}+1 Φ37(x)=x36+x35+x34+x33+x32+x31+x30+x29+x28+x27+x26+x25+x24+x23+x22+x21+x20+x19+x18+x17+x16+x15+x14+x13+x12+x11+x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1\Phi_{37}(x) = x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 Φ38(x)=x18−x17+x16−x15+x14−x13+x12−x11+x10−x9+x8−x7+x6−x5+x4−x3+x2−x+1\Phi_{38}(x) = x^{18}-x^{17}+x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}+x^{10}-x^{9}+x^{8}-x^{7}+x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1 Φ39(x)=x24−x23+x21−x20+x18−x17+x15−x14+x12−x10+x9−x7+x6−x4+x3−x+1\Phi_{39}(x) = x^{24}-x^{23}+x^{21}-x^{20}+x^{18}-x^{17}+x^{15}-x^{14}+x^{12}-x^{10}+x^{9}-x^{7}+x^{6}-x^{4}+x^{3}-x+1 Φ40(x)=x16−x12+x8−x4+1\Phi_{40}(x) = x^{16}-x^{12}+x^{8}-x^{4}+1 Φ41(x)=x40+x39+x38+x37+x36+x35+x34+x33+x32+x31+x30+x29+x28+x27+x26+x25+x24+x23+x22+x21+x20+x19+x18+x17+x16+x15+x14+x13+x12+x11+x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1\Phi_{41}(x) = x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 Φ42(x)=x12+x11−x9−x8+x6−x4−x3+x+1\Phi_{42}(x) = x^{12}+x^{11}-x^{9}-x^{8}+x^{6}-x^{4}-x^{3}+x+1 Φ43(x)=x42+x41+x40+x39+x38+x37+x36+x35+x34+x33+x32+x31+x30+x29+x28+x27+x26+x25+x24+x23+x22+x21+x20+x19+x18+x17+x16+x15+x14+x13+x12+x11+x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1\Phi_{43}(x) = x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 Φ44(x)=x20−x18+x16−x14+x12−x10+x8−x6+x4−x2+1\Phi_{44}(x) = x^{20}-x^{18}+x^{16}-x^{14}+x^{12}-x^{10}+x^{8}-x^{6}+x^{4}-x^{2}+1 Φ45(x)=x24−x21+x15−x12+x9−x3+1\Phi_{45}(x) = x^{24}-x^{21}+x^{15}-x^{12}+x^{9}-x^{3}+1 Φ46(x)=x22−x21+x20−x19+x18−x17+x16−x15+x14−x13+x12−x11+x10−x9+x8−x7+x6−x5+x4−x3+x2−x+1\Phi_{46}(x) = x^{22}-x^{21}+x^{20}-x^{19}+x^{18}-x^{17}+x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}+x^{10}-x^{9}+x^{8}-x^{7}+x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1 Φ47(x)=x46+x45+x44+x43+x42+x41+x40+x39+x38+x37+x36+x35+x34+x33+x32+x31+x30+x29+x28+x27+x26+x25+x24+x23+x22+x21+x20+x19+x18+x17+x16+x15+x14+x13+x12+x11+x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1\Phi_{47}(x) = x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 Φ48(x)=x16−x8+1\Phi_{48}(x) = x^{16}-x^{8}+1 Φ49(x)=x42+x35+x28+x21+x14+x7+1\Phi_{49}(x) = x^{42}+x^{35}+x^{28}+x^{21}+x^{14}+x^{7}+1 Φ50(x)=x20−x15+x10−x5+1\Phi_{50}(x) = x^{20}-x^{15}+x^{10}-x^{5}+1 Φ51(x)=x32−x31+x29−x28+x26−x25+x23−x22+x20−x19+x17−x16+x15−x13+x12−x10+x9−x7+x6−x4+x3−x+1\Phi_{51}(x) = x^{32}-x^{31}+x^{29}-x^{28}+x^{26}-x^{25}+x^{23}-x^{22}+x^{20}-x^{19}+x^{17}-x^{16}+x^{15}-x^{13}+x^{12}-x^{10}+x^{9}-x^{7}+x^{6}-x^{4}+x^{3}-x+1 Φ52(x)=x24−x22+x20−x18+x16−x14+x12−x10+x8−x6+x4−x2+1\Phi_{52}(x) = x^{24}-x^{22}+x^{20}-x^{18}+x^{16}-x^{14}+x^{12}-x^{10}+x^{8}-x^{6}+x^{4}-x^{2}+1 Φ53(x)=x52+x51+x50+x49+x48+x47+x46+x45+x44+x43+x42+x41+x40+x39+x38+x37+x36+x35+x34+x33+x32+x31+x30+x29+x28+x27+x26+x25+x24+x23+x22+x21+x20+x19+x18+x17+x16+x15+x14+x13+x12+x11+x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1\Phi_{53}(x) = x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 Φ54(x)=x18−x9+1\Phi_{54}(x) = x^{18}-x^{9}+1 Φ55(x)=x40−x39+x35−x34+x30−x28+x25−x23+x20−x17+x15−x12+x10−x6+x5−x+1\Phi_{55}(x) = x^{40}-x^{39}+x^{35}-x^{34}+x^{30}-x^{28}+x^{25}-x^{23}+x^{20}-x^{17}+x^{15}-x^{12}+x^{10}-x^{6}+x^{5}-x+1 Φ56(x)=x24−x20+x16−x12+x8−x4+1\Phi_{56}(x) = x^{24}-x^{20}+x^{16}-x^{12}+x^{8}-x^{4}+1 Φ57(x)=x36−x35+x33−x32+x30−x29+x27−x26+x24−x23+x21−x20+x18−x16+x15−x13+x12−x10+x9−x7+x6−x4+x3−x+1\Phi_{57}(x) = x^{36}-x^{35}+x^{33}-x^{32}+x^{30}-x^{29}+x^{27}-x^{26}+x^{24}-x^{23}+x^{21}-x^{20}+x^{18}-x^{16}+x^{15}-x^{13}+x^{12}-x^{10}+x^{9}-x^{7}+x^{6}-x^{4}+x^{3}-x+1 Φ58(x)=x28−x27+x26−x25+x24−x23+x22−x21+x20−x19+x18−x17+x16−x15+x14−x13+x12−x11+x10−x9+x8−x7+x6−x5+x4−x3+x2−x+1\Phi_{58}(x) = x^{28}-x^{27}+x^{26}-x^{25}+x^{24}-x^{23}+x^{22}-x^{21}+x^{20}-x^{19}+x^{18}-x^{17}+x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}+x^{10}-x^{9}+x^{8}-x^{7}+x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1 Φ59(x)=x58+x57+x56+x55+x54+x53+x52+x51+x50+x49+x48+x47+x46+x45+x44+x43+x42+x41+x40+x39+x38+x37+x36+x35+x34+x33+x32+x31+x30+x29+x28+x27+x26+x25+x24+x23+x22+x21+x20+x19+x18+x17+x16+x15+x14+x13+x12+x11+x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1\Phi_{59}(x) = x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 Φ60(x)=x16+x14−x10−x8−x6+x2+1\Phi_{60}(x) = x^{16}+x^{14}-x^{10}-x^{8}-x^{6}+x^{2}+1 Φ61(x)=x60+x59+x58+x57+x56+x55+x54+x53+x52+x51+x50+x49+x48+x47+x46+x45+x44+x43+x42+x41+x40+x39+x38+x37+x36+x35+x34+x33+x32+x31+x30+x29+x28+x27+x26+x25+x24+x23+x22+x21+x20+x19+x18+x17+x16+x15+x14+x13+x12+x11+x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1\Phi_{61}(x) = x^{60}+x^{59}+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 Φ62(x)=x30−x29+x28−x27+x26−x25+x24−x23+x22−x21+x20−x19+x18−x17+x16−x15+x14−x13+x12−x11+x10−x9+x8−x7+x6−x5+x4−x3+x2−x+1\Phi_{62}(x) = x^{30}-x^{29}+x^{28}-x^{27}+x^{26}-x^{25}+x^{24}-x^{23}+x^{22}-x^{21}+x^{20}-x^{19}+x^{18}-x^{17}+x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}+x^{10}-x^{9}+x^{8}-x^{7}+x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1 Φ63(x)=x36−x33+x27−x24+x18−x12+x9−x3+1\Phi_{63}(x) = x^{36}-x^{33}+x^{27}-x^{24}+x^{18}-x^{12}+x^{9}-x^{3}+1 Φ64(x)=x32+1\Phi_{64}(x) = x^{32}+1 Φ65(x)=x48−x47+x43−x42+x38−x37+x35−x34+x33−x32+x30−x29+x28−x27+x25−x24+x23−x21+x20−x19+x18−x16+x15−x14+x13−x11+x10−x6+x5−x+1\Phi_{65}(x) = x^{48}-x^{47}+x^{43}-x^{42}+x^{38}-x^{37}+x^{35}-x^{34}+x^{33}-x^{32}+x^{30}-x^{29}+x^{28}-x^{27}+x^{25}-x^{24}+x^{23}-x^{21}+x^{20}-x^{19}+x^{18}-x^{16}+x^{15}-x^{14}+x^{13}-x^{11}+x^{10}-x^{6}+x^{5}-x+1 Φ66(x)=x20+x19−x17−x16+x14+x13−x11−x10−x9+x7+x6−x4−x3+x+1\Phi_{66}(x) = x^{20}+x^{19}-x^{17}-x^{16}+x^{14}+x^{13}-x^{11}-x^{10}-x^{9}+x^{7}+x^{6}-x^{4}-x^{3}+x+1 Φ67(x)=x66+x65+x64+x63+x62+x61+x60+x59+x58+x57+x56+x55+x54+x53+x52+x51+x50+x49+x48+x47+x46+x45+x44+x43+x42+x41+x40+x39+x38+x37+x36+x35+x34+x33+x32+x31+x30+x29+x28+x27+x26+x25+x24+x23+x22+x21+x20+x19+x18+x17+x16+x15+x14+x13+x12+x11+x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1\Phi_{67}(x) = x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 Φ68(x)=x32−x30+x28−x26+x24−x22+x20−x18+x16−x14+x12−x10+x8−x6+x4−x2+1\Phi_{68}(x) = x^{32}-x^{30}+x^{28}-x^{26}+x^{24}-x^{22}+x^{20}-x^{18}+x^{16}-x^{14}+x^{12}-x^{10}+x^{8}-x^{6}+x^{4}-x^{2}+1 Φ69(x)=x44−x43+x41−x40+x38−x37+x35−x34+x32−x31+x29−x28+x26−x25+x23−x22+x21−x19+x18−x16+x15−x13+x12−x10+x9−x7+x6−x4+x3−x+1\Phi_{69}(x) = x^{44}-x^{43}+x^{41}-x^{40}+x^{38}-x^{37}+x^{35}-x^{34}+x^{32}-x^{31}+x^{29}-x^{28}+x^{26}-x^{25}+x^{23}-x^{22}+x^{21}-x^{19}+x^{18}-x^{16}+x^{15}-x^{13}+x^{12}-x^{10}+x^{9}-x^{7}+x^{6}-x^{4}+x^{3}-x+1 Φ70(x)=x24+x23−x19−x18−x17−x16+x14+x13+x12+x11+x10−x8−x7−x6−x5+x+1\Phi_{70}(x) = x^{24}+x^{23}-x^{19}-x^{18}-x^{17}-x^{16}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}-x^{8}-x^{7}-x^{6}-x^{5}+x+1 Φ71(x)=x70+x69+x68+x67+x66+x65+x64+x63+x62+x61+x60+x59+x58+x57+x56+x55+x54+x53+x52+x51+x50+x49+x48+x47+x46+x45+x44+x43+x42+x41+x40+x39+x38+x37+x36+x35+x34+x33+x32+x31+x30+x29+x28+x27+x26+x25+x24+x23+x22+x21+x20+x19+x18+x17+x16+x15+x14+x13+x12+x11+x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1\Phi_{71}(x) = x^{70}+x^{69}+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 Φ72(x)=x24−x12+1\Phi_{72}(x) = x^{24}-x^{12}+1 Φ73(x)=x72+x71+x70+x69+x68+x67+x66+x65+x64+x63+x62+x61+x60+x59+x58+x57+x56+x55+x54+x53+x52+x51+x50+x49+x48+x47+x46+x45+x44+x43+x42+x41+x40+x39+x38+x37+x36+x35+x34+x33+x32+x31+x30+x29+x28+x27+x26+x25+x24+x23+x22+x21+x20+x19+x18+x17+x16+x15+x14+x13+x12+x11+x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1\Phi_{73}(x) = x^{72}+x^{71}+x^{70}+x^{69}+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 Φ74(x)=x36−x35+x34−x33+x32−x31+x30−x29+x28−x27+x26−x25+x24−x23+x22−x21+x20−x19+x18−x17+x16−x15+x14−x13+x12−x11+x10−x9+x8−x7+x6−x5+x4−x3+x2−x+1\Phi_{74}(x) = x^{36}-x^{35}+x^{34}-x^{33}+x^{32}-x^{31}+x^{30}-x^{29}+x^{28}-x^{27}+x^{26}-x^{25}+x^{24}-x^{23}+x^{22}-x^{21}+x^{20}-x^{19}+x^{18}-x^{17}+x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}+x^{10}-x^{9}+x^{8}-x^{7}+x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1 Φ75(x)=x40−x35+x25−x20+x15−x5+1\Phi_{75}(x) = x^{40}-x^{35}+x^{25}-x^{20}+x^{15}-x^{5}+1 Φ76(x)=x36−x34+x32−x30+x28−x26+x24−x22+x20−x18+x16−x14+x12−x10+x8−x6+x4−x2+1\Phi_{76}(x) = x^{36}-x^{34}+x^{32}-x^{30}+x^{28}-x^{26}+x^{24}-x^{22}+x^{20}-x^{18}+x^{16}-x^{14}+x^{12}-x^{10}+x^{8}-x^{6}+x^{4}-x^{2}+1 Φ77(x)=x60−x59+x53−x52+x49−x48+x46−x45+x42−x41+x39−x37+x35−x34+x32−x30+x28−x26+x25−x23+x21−x19+x18−x15+x14−x12+x11−x8+x7−x+1\Phi_{77}(x) = x^{60}-x^{59}+x^{53}-x^{52}+x^{49}-x^{48}+x^{46}-x^{45}+x^{42}-x^{41}+x^{39}-x^{37}+x^{35}-x^{34}+x^{32}-x^{30}+x^{28}-x^{26}+x^{25}-x^{23}+x^{21}-x^{19}+x^{18}-x^{15}+x^{14}-x^{12}+x^{11}-x^{8}+x^{7}-x+1 Φ78(x)=x24+x23−x21−x20+x18+x17−x15−x14+x12−x10−x9+x7+x6−x4−x3+x+1\Phi_{78}(x) = x^{24}+x^{23}-x^{21}-x^{20}+x^{18}+x^{17}-x^{15}-x^{14}+x^{12}-x^{10}-x^{9}+x^{7}+x^{6}-x^{4}-x^{3}+x+1 Φ79(x)=x78+x77+x76+x75+x74+x73+x72+x71+x70+x69+x68+x67+x66+x65+x64+x63+x62+x61+x60+x59+x58+x57+x56+x55+x54+x53+x52+x51+x50+x49+x48+x47+x46+x45+x44+x43+x42+x41+x40+x39+x38+x37+x36+x35+x34+x33+x32+x31+x30+x29+x28+x27+x26+x25+x24+x23+x22+x21+x20+x19+x18+x17+x16+x15+x14+x13+x12+x11+x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1\Phi_{79}(x) = x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}+x^{70}+x^{69}+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 Φ80(x)=x32−x24+x16−x8+1\Phi_{80}(x) = x^{32}-x^{24}+x^{16}-x^{8}+1 Φ81(x)=x54+x27+1\Phi_{81}(x) = x^{54}+x^{27}+1 Φ82(x)=x40−x39+x38−x37+x36−x35+x34−x33+x32−x31+x30−x29+x28−x27+x26−x25+x24−x23+x22−x21+x20−x19+x18−x17+x16−x15+x14−x13+x12−x11+x10−x9+x8−x7+x6−x5+x4−x3+x2−x+1\Phi_{82}(x) = x^{40}-x^{39}+x^{38}-x^{37}+x^{36}-x^{35}+x^{34}-x^{33}+x^{32}-x^{31}+x^{30}-x^{29}+x^{28}-x^{27}+x^{26}-x^{25}+x^{24}-x^{23}+x^{22}-x^{21}+x^{20}-x^{19}+x^{18}-x^{17}+x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}+x^{10}-x^{9}+x^{8}-x^{7}+x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1 Φ83(x)=x82+x81+x80+x79+x78+x77+x76+x75+x74+x73+x72+x71+x70+x69+x68+x67+x66+x65+x64+x63+x62+x61+x60+x59+x58+x57+x56+x55+x54+x53+x52+x51+x50+x49+x48+x47+x46+x45+x44+x43+x42+x41+x40+x39+x38+x37+x36+x35+x34+x33+x32+x31+x30+x29+x28+x27+x26+x25+x24+x23+x22+x21+x20+x19+x18+x17+x16+x15+x14+x13+x12+x11+x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1\Phi_{83}(x) = x^{82}+x^{81}+x^{80}+x^{79}+x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}+x^{70}+x^{69}+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 Φ84(x)=x24+x22−x18−x16+x12−x8−x6+x2+1\Phi_{84}(x) = x^{24}+x^{22}-x^{18}-x^{16}+x^{12}-x^{8}-x^{6}+x^{2}+1 Φ85(x)=x64−x63+x59−x58+x54−x53+x49−x48+x47−x46+x44−x43+x42−x41+x39−x38+x37−x36+x34−x33+x32−x31+x30−x28+x27−x26+x25−x23+x22−x21+x20−x18+x17−x16+x15−x11+x10−x6+x5−x+1\Phi_{85}(x) = x^{64}-x^{63}+x^{59}-x^{58}+x^{54}-x^{53}+x^{49}-x^{48}+x^{47}-x^{46}+x^{44}-x^{43}+x^{42}-x^{41}+x^{39}-x^{38}+x^{37}-x^{36}+x^{34}-x^{33}+x^{32}-x^{31}+x^{30}-x^{28}+x^{27}-x^{26}+x^{25}-x^{23}+x^{22}-x^{21}+x^{20}-x^{18}+x^{17}-x^{16}+x^{15}-x^{11}+x^{10}-x^{6}+x^{5}-x+1 Φ86(x)=x42−x41+x40−x39+x38−x37+x36−x35+x34−x33+x32−x31+x30−x29+x28−x27+x26−x25+x24−x23+x22−x21+x20−x19+x18−x17+x16−x15+x14−x13+x12−x11+x10−x9+x8−x7+x6−x5+x4−x3+x2−x+1\Phi_{86}(x) = x^{42}-x^{41}+x^{40}-x^{39}+x^{38}-x^{37}+x^{36}-x^{35}+x^{34}-x^{33}+x^{32}-x^{31}+x^{30}-x^{29}+x^{28}-x^{27}+x^{26}-x^{25}+x^{24}-x^{23}+x^{22}-x^{21}+x^{20}-x^{19}+x^{18}-x^{17}+x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}+x^{10}-x^{9}+x^{8}-x^{7}+x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1 Φ87(x)=x56−x55+x53−x52+x50−x49+x47−x46+x44−x43+x41−x40+x38−x37+x35−x34+x32−x31+x29−x28+x27−x25+x24−x22+x21−x19+x18−x16+x15−x13+x12−x10+x9−x7+x6−x4+x3−x+1\Phi_{87}(x) = x^{56}-x^{55}+x^{53}-x^{52}+x^{50}-x^{49}+x^{47}-x^{46}+x^{44}-x^{43}+x^{41}-x^{40}+x^{38}-x^{37}+x^{35}-x^{34}+x^{32}-x^{31}+x^{29}-x^{28}+x^{27}-x^{25}+x^{24}-x^{22}+x^{21}-x^{19}+x^{18}-x^{16}+x^{15}-x^{13}+x^{12}-x^{10}+x^{9}-x^{7}+x^{6}-x^{4}+x^{3}-x+1 Φ88(x)=x40−x36+x32−x28+x24−x20+x16−x12+x8−x4+1\Phi_{88}(x) = x^{40}-x^{36}+x^{32}-x^{28}+x^{24}-x^{20}+x^{16}-x^{12}+x^{8}-x^{4}+1 Φ89(x)=x88+x87+x86+x85+x84+x83+x82+x81+x80+x79+x78+x77+x76+x75+x74+x73+x72+x71+x70+x69+x68+x67+x66+x65+x64+x63+x62+x61+x60+x59+x58+x57+x56+x55+x54+x53+x52+x51+x50+x49+x48+x47+x46+x45+x44+x43+x42+x41+x40+x39+x38+x37+x36+x35+x34+x33+x32+x31+x30+x29+x28+x27+x26+x25+x24+x23+x22+x21+x20+x19+x18+x17+x16+x15+x14+x13+x12+x11+x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1\Phi_{89}(x) = x^{88}+x^{87}+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}+x^{80}+x^{79}+x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}+x^{70}+x^{69}+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 Φ90(x)=x24+x21−x15−x12−x9+x3+1\Phi_{90}(x) = x^{24}+x^{21}-x^{15}-x^{12}-x^{9}+x^{3}+1 Φ91(x)=x72−x71+x65−x64+x59−x57+x52−x50+x46−x43+x39−x36+x33−x29+x26−x22+x20−x15+x13−x8+x7−x+1\Phi_{91}(x) = x^{72}-x^{71}+x^{65}-x^{64}+x^{59}-x^{57}+x^{52}-x^{50}+x^{46}-x^{43}+x^{39}-x^{36}+x^{33}-x^{29}+x^{26}-x^{22}+x^{20}-x^{15}+x^{13}-x^{8}+x^{7}-x+1 Φ92(x)=x44−x42+x40−x38+x36−x34+x32−x30+x28−x26+x24−x22+x20−x18+x16−x14+x12−x10+x8−x6+x4−x2+1\Phi_{92}(x) = x^{44}-x^{42}+x^{40}-x^{38}+x^{36}-x^{34}+x^{32}-x^{30}+x^{28}-x^{26}+x^{24}-x^{22}+x^{20}-x^{18}+x^{16}-x^{14}+x^{12}-x^{10}+x^{8}-x^{6}+x^{4}-x^{2}+1 Φ93(x)=x60−x59+x57−x56+x54−x53+x51−x50+x48−x47+x45−x44+x42−x41+x39−x38+x36−x35+x33−x32+x30−x28+x27−x25+x24−x22+x21−x19+x18−x16+x15−x13+x12−x10+x9−x7+x6−x4+x3−x+1\Phi_{93}(x) = x^{60}-x^{59}+x^{57}-x^{56}+x^{54}-x^{53}+x^{51}-x^{50}+x^{48}-x^{47}+x^{45}-x^{44}+x^{42}-x^{41}+x^{39}-x^{38}+x^{36}-x^{35}+x^{33}-x^{32}+x^{30}-x^{28}+x^{27}-x^{25}+x^{24}-x^{22}+x^{21}-x^{19}+x^{18}-x^{16}+x^{15}-x^{13}+x^{12}-x^{10}+x^{9}-x^{7}+x^{6}-x^{4}+x^{3}-x+1 Φ94(x)=x46−x45+x44−x43+x42−x41+x40−x39+x38−x37+x36−x35+x34−x33+x32−x31+x30−x29+x28−x27+x26−x25+x24−x23+x22−x21+x20−x19+x18−x17+x16−x15+x14−x13+x12−x11+x10−x9+x8−x7+x6−x5+x4−x3+x2−x+1\Phi_{94}(x) = x^{46}-x^{45}+x^{44}-x^{43}+x^{42}-x^{41}+x^{40}-x^{39}+x^{38}-x^{37}+x^{36}-x^{35}+x^{34}-x^{33}+x^{32}-x^{31}+x^{30}-x^{29}+x^{28}-x^{27}+x^{26}-x^{25}+x^{24}-x^{23}+x^{22}-x^{21}+x^{20}-x^{19}+x^{18}-x^{17}+x^{16}-x^{15}+x^{14}-x^{13}+x^{12}-x^{11}+x^{10}-x^{9}+x^{8}-x^{7}+x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1 Φ95(x)=x72−x71+x67−x66+x62−x61+x57−x56+x53−x51+x48−x46+x43−x41+x38−x36+x34−x31+x29−x26+x24−x21+x19−x16+x15−x11+x10−x6+x5−x+1\Phi_{95}(x) = x^{72}-x^{71}+x^{67}-x^{66}+x^{62}-x^{61}+x^{57}-x^{56}+x^{53}-x^{51}+x^{48}-x^{46}+x^{43}-x^{41}+x^{38}-x^{36}+x^{34}-x^{31}+x^{29}-x^{26}+x^{24}-x^{21}+x^{19}-x^{16}+x^{15}-x^{11}+x^{10}-x^{6}+x^{5}-x+1 Φ96(x)=x32−x16+1\Phi_{96}(x) = x^{32}-x^{16}+1 Φ97(x)=x96+x95+x94+x93+x92+x91+x90+x89+x88+x87+x86+x85+x84+x83+x82+x81+x80+x79+x78+x77+x76+x75+x74+x73+x72+x71+x70+x69+x68+x67+x66+x65+x64+x63+x62+x61+x60+x59+x58+x57+x56+x55+x54+x53+x52+x51+x50+x49+x48+x47+x46+x45+x44+x43+x42+x41+x40+x39+x38+x37+x36+x35+x34+x33+x32+x31+x30+x29+x28+x27+x26+x25+x24+x23+x22+x21+x20+x19+x18+x17+x16+x15+x14+x13+x12+x11+x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1\Phi_{97}(x) = x^{96}+x^{95}+x^{94}+x^{93}+x^{92}+x^{91}+x^{90}+x^{89}+x^{88}+x^{87}+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}+x^{80}+x^{79}+x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}+x^{70}+x^{69}+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 Φ98(x)=x42−x35+x28−x21+x14−x7+1\Phi_{98}(x) = x^{42}-x^{35}+x^{28}-x^{21}+x^{14}-x^{7}+1 Φ99(x)=x60−x57+x51−x48+x42−x39+x33−x30+x27−x21+x18−x12+x9−x3+1\Phi_{99}(x) = x^{60}-x^{57}+x^{51}-x^{48}+x^{42}-x^{39}+x^{33}-x^{30}+x^{27}-x^{21}+x^{18}-x^{12}+x^{9}-x^{3}+1 Φ100(x)=x40−x30+x20−x10+1\Phi_{100}(x) = x^{40}-x^{30}+x^{20}-x^{10}+1 Φ101(x)=x100+x99+x98+x97+x96+x95+x94+x93+x92+x91+x90+x89+x88+x87+x86+x85+x84+x83+x82+x81+x80+x79+x78+x77+x76+x75+x74+x73+x72+x71+x70+x69+x68+x67+x66+x65+x64+x63+x62+x61+x60+x59+x58+x57+x56+x55+x54+x53+x52+x51+x50+x49+x48+x47+x46+x45+x44+x43+x42+x41+x40+x39+x38+x37+x36+x35+x34+x33+x32+x31+x30+x29+x28+x27+x26+x25+x24+x23+x22+x21+x20+x19+x18+x17+x16+x15+x14+x13+x12+x11+x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1\Phi_{101}(x) = x^{100}+x^{99}+x^{98}+x^{97}+x^{96}+x^{95}+x^{94}+x^{93}+x^{92}+x^{91}+x^{90}+x^{89}+x^{88}+x^{87}+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}+x^{80}+x^{79}+x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}+x^{70}+x^{69}+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 Φ102(x)=x32+x31−x29−x28+x26+x25−x23−x22+x20+x19−x17−x16−x15+x13+x12−x10−x9+x7+x6−x4−x3+x+1\Phi_{102}(x) = x^{32}+x^{31}-x^{29}-x^{28}+x^{26}+x^{25}-x^{23}-x^{22}+x^{20}+x^{19}-x^{17}-x^{16}-x^{15}+x^{13}+x^{12}-x^{10}-x^{9}+x^{7}+x^{6}-x^{4}-x^{3}+x+1 Φ103(x)=x102+x101+x100+x99+x98+x97+x96+x95+x94+x93+x92+x91+x90+x89+x88+x87+x86+x85+x84+x83+x82+x81+x80+x79+x78+x77+x76+x75+x74+x73+x72+x71+x70+x69+x68+x67+x66+x65+x64+x63+x62+x61+x60+x59+x58+x57+x56+x55+x54+x53+x52+x51+x50+x49+x48+x47+x46+x45+x44+x43+x42+x41+x40+x39+x38+x37+x36+x35+x34+x33+x32+x31+x30+x29+x28+x27+x26+x25+x24+x23+x22+x21+x20+x19+x18+x17+x16+x15+x14+x13+x12+x11+x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1\Phi_{103}(x) = x^{102}+x^{101}+x^{100}+x^{99}+x^{98}+x^{97}+x^{96}+x^{95}+x^{94}+x^{93}+x^{92}+x^{91}+x^{90}+x^{89}+x^{88}+x^{87}+x^{86}+x^{85}+x^{84}+x^{83}+x^{82}+x^{81}+x^{80}+x^{79}+x^{78}+x^{77}+x^{76}+x^{75}+x^{74}+x^{73}+x^{72}+x^{71}+x^{70}+x^{69}+x^{68}+x^{67}+x^{66}+x^{65}+x^{64}+x^{63}+x^{62}+x^{61}+x^{60}+x^{59}+x^{58}+x^{57}+x^{56}+x^{55}+x^{54}+x^{53}+x^{52}+x^{51}+x^{50}+x^{49}+x^{48}+x^{47}+x^{46}+x^{45}+x^{44}+x^{43}+x^{42}+x^{41}+x^{40}+x^{39}+x^{38}+x^{37}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}+x^{30}+x^{29}+x^{28}+x^{27}+x^{26}+x^{25}+x^{24}+x^{23}+x^{22}+x^{21}+x^{20}+x^{19}+x^{18}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}+x^{11}+x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1 Φ104(x)=x48−x44+x40−x36+x32−x28+x24−x20+x16−x12+x8−x4+1\Phi_{104}(x) = x^{48}-x^{44}+x^{40}-x^{36}+x^{32}-x^{28}+x^{24}-x^{20}+x^{16}-x^{12}+x^{8}-x^{4}+1 Φ105(x)=x48+x47+x46−x43−x42−2x41−x40−x39+x36+x35+x34+x33+x32+x31−x28−x26−x24−x22−x20+x17+x16+x15+x14+x13+x12−x9−x8−2x7−x6−x5+x2+x+1\Phi_{105}(x) = x^{48}+x^{47}+x^{46}-x^{43}-x^{42}-2x^{41}-x^{40}-x^{39}+x^{36}+x^{35}+x^{34}+x^{33}+x^{32}+x^{31}-x^{28}-x^{26}-x^{24}-x^{22}-x^{20}+x^{17}+x^{16}+x^{15}+x^{14}+x^{13}+x^{12}-x^{9}-x^{8}-2x^{7}-x^{6}-x^{5}+x^{2}+x+1